Robustness properties of dispersion estimators
نویسندگان
چکیده
In this paper, we derive the in uence function of dispersion estimators, based on a scale approach. The relation between the gross-error sensitivity of dispersion estimators and the one of the underlying scale estimator is described. We show that for the bivariate Gaussian distributions, the asymptotic variance of covariance estimators is minimal in the independent case, and is strictly increasing with the absolute value of the underlying covariance. The behavior of the asymptotic variance of correlation estimators seems to be the opposite, i.e. maximal for independent data, and strictly decreasing with the absolute value of the underlying correlation. In particular, dispersion estimators based on M-estimators of scale are studied closely. The one based on the median absolute deviation is the most B-robust in the class of symmetric estimators. Some other examples are analyzed, based on the maximum likelihood and the Welsch estimator of scale. c © 1999 Elsevier Science B.V. All rights reserved
منابع مشابه
A Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملTrimming and Likelihood : Robust Location and Dispersion Estimation in the Elliptical Model
Robust estimators of location and dispersion are often used in the elliptical model to obtain an uncontaminated and highly representative subsample by trimming the data outside an ellipsoid based in the associated Mahalanobis distance. Here we analyze some one (or k)-step Maximum Likelihood Estimators computed on a subsample obtained with such a procedure. We introduce different models which ar...
متن کاملHighly Robust Estimation of Dispersion Matrices
In this paper, we propose a new componentwise estimator of a dispersion matrix, based on a highly robust estimator of scale. The key idea is the elimination of a location estimator in the dispersion estimation procedure. The robustness properties are studied by means of the influence function and the breakdown point. Further characteristics such as asymptotic variance and efficiency are also an...
متن کاملA Robust Dispersion Control Chart Based on M-estimate
Process control charts are proven techniques for improving quality. Specifying the control limits is the most important step in designing a control chart. The presence of outliers may extremely affect the estimates of parameters using classical methods. Robust estimators which are not affected by outliers or the small departures from the model assumptions are applied in this paper to specify th...
متن کاملGeneralized Multivariate Rank Type Test Statistics via Spatial U-Quantiles
The classical univariate sign and signed rank tests for location have been extended over the years to the multivariate setting, including recent robust rotation invariant “spatial” versions. Here we introduce a broad class of rotation invariant multivariate spatial generalized rank type test statistics. For a given inference problem not restricted to location, the test statistics are linked thr...
متن کامل